Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 1 of 15

Exhibit I

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 2 of 15

“h Uniswap Whitepaper

. 4. A WORKIN PROGRESS 4 4 4

e _“h_Uniswap Whitepaper

e Introduction

e Gas Benchmarks

e Creating Exchanges

e ETH 2 ERC20 Trades
o Example: ETH - OMG

e ERC20 2 ERC20 Trades

e Swaps vs Transfers

e Providing_Liquidity
o Adding_Liquidity
m Liquidity Tokens

o Removing_Liquidity

o Liquidity Tokens

e Fee Structure

e Custom Pools
o ERC20 to Exchange

o Opt-in Upgrades

e Frontrunning

e DEX inside a Whitepaper

Introduction

Uniswap is a protocol for automated token exchange on Ethereum. It is designed around ease-
of-use, gas efficiency, censorship resistance, and zero rent extraction. It is useful for traders and
functions particularily well as a component of other smart contracts which require guaranteed
on-chain liquidity.

Most exchanges maintain an order book and facilitate matches between buyers and sellers.
Uniswap smart contracts hold liquidity reserves of various tokens, and trades are executed
directly against these reserves. Prices are set automatically using the constant product (x*y=k_
(https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281)) market maker mechanism,

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 3 of 15

which keeps overall reserves in relative equilibrium. Reserves are pooled between a network of
liquidity providers who supply the system with tokens in exchange for a proportional share of
transaction fees.

An important feature of Uniswap is the utilization of a factory/registry contract that deploys a
separate exchange contract for each ERC20 token. These exchange contracts each hold a
reserve of ETH and their associated ERC20. This allows trades between the two based on relative
supply. Exchange contracts are linked through the registry, allowing for direct ERC20 to ERC20
trades between any tokens using ETH as an itermediary.

This document outlines the core mechanics and technical details for Uniswap. Some code is
simplified for readability. Safety features such as overflow checks and purchase minimums are
ommited. The full source code is availible on GitHub.

Protocol Website:
uniswap.io (http://uniswap.io)

Documentation:
docs.uniswap.io (http://docs.uniswap.io)

Code:
github.com/Uniswap (http://github.com/Uniswap)

Formalized Model:
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-

k.pdf (https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf))

Gas Benchmarks

Uniswap is very gas efficient due to its minimalistic design. For ETH to ERC20 trades it uses
almost 10x less gas than Bancor. It can perform ERC20 to ERC20 trades more efficiently than 0x,
and has significant gas reductions when compared to on-chain order book exchanges, such as
EtherDelta and IDEX.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 4 of 15

Exchange Uniswap EtherDelta

ETH to 46,000 108,000
ERC20 ' (https://etherscan.io/tx/0xb0d4330872132a808381bc709069e233c6f69f0bd4c4adb87e2d”
ERC20 to 93,000
60,000
ETH (https://etherscan.io/tx/0xc06aeb2b6794271c978b2d41b16ba0e75f80f55ab9160b21212d(
ERC20 to
88,000 no
ERC20
*wrapped
ETH

The cost of a direct ERC20 token transfer is 36,000 gas - approximately 20% less than an ETH to
ERC20 trade on Uniswap. & & &

Creating Exchanges

uniswap_factory.vy (https://github.com/Uniswap/contracts-vyper/blob/master/contracts/uniswap factory.vy) is a

smart contract that serves as both a factory and registry for Uniswap exchanges. The public
function createkxchange() allows any Ethereum user to deploy an exchange contract for any
ERC20 that does not already have one.

exchangeTemplate: public(address)
token_to_exchange: address[address]
exchange_to_token: address[address]

@public
def _init (template: address):
self.exchangeTemplate = template

@public

def createExchange(token: address) -> address:
assert self.token_to_exchange[token] == ZERO_ADDRESS
new_exchange: address = create_with code of(self.exchangeTemplate)
self.token_to_exchange[token] = new_exchange
self.exchange_to_token[new_exchange] = token
return new_exchange

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 5 of 15

A record of all tokens and their assoicated exchanges is stored in the factory. With either a
token or exchange address, the functions getExchange() and getToken() can be used to look
up the other.

@public

@constant

def getExchange(token: address) -> address:
return self.token_to_exchange[token]

@public

@constant

def getToken(exchange: address) -> address:
return self.exchange_to_token[exchange]

The factory does not perform any checks on a token when launching an exchange contract,
other than enforcing the one-exchange-per-token limit. Users and frontends should only
interact with exchanges associated with tokens they trust.

ETH 2 ERC20 Trades

Each exchange contract (_luniswap_exchange.vy (https://github.com/Uniswap/contracts-

vyper/blob/master/contracts/uniswap_exchange.vy)) is associated with a single ERC20 token and holds a
liquidity pool of both ETH and that token. The exchange rate between ETH and an ERC20 is
based on the relative sizes of their liquidity pools within the contract. This is done by

maintaining the relationship eth_pool * token_pool = invariant . This invariant is held constant
during trades and only changes when liquidity is added or removed from the market.

A simplified version of ethToTokenswap() , the function for converting ETH to ERC20 tokens, is
shown below:

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 6 of 15

eth_pool: uint256
token_pool: uint256
token: address(ERC20)

@public

@payable

def ethToTokenSwap():
fee: uint256 = msg.value / 500
invariant: uint256 = self.eth_pool * self.token_pool
new_eth_pool: uint256 = self.eth_pool + msg.value
new_token_pool: uint256 = invariant / (new_eth_pool - fee)
tokens_out: uint256 = self.token_pool - new_token_pool
self.eth_pool = new_eth_pool
self.token_pool = new_token_pool
self.token.transfer(msg.sender, tokens_out)

Note: For gas efficiency eth_pool and token_pool are not stored variables. They are found
using self.balance and through an external call to self.token.balanceOf(self)

When ETH is sent to the function eth_pool increases. In order to maintain the relationship
eth_pool * token_pool = invariant, token pool is decreased by a proporitonal amount. The
amount by which token_pool is decreased is the amount of tokens purchased. This change in
reserve ratio shifts the ETH to ERC20 exchange rate, incentivizing trades in the opposite
direction.

Exchanging tokens for ETH is done with the function tokenToEthSwap() :

@public

def tokenToEthSwap(tokens_in: uint256):
fee: uint256 = tokens_in / 500
invariant: uint256 = self.eth_pool * self.token_pool
new_token_pool: uint256 = self.token_pool + tokens_in
new_eth _pool: uint256 = self.invariant / (new_token pool - fee)
eth_out: uint256 = self.eth_pool - new_eth_pool
self.eth_pool = new_eth_pool
self.token_pool = new_token_pool
self.token.transferFrom(msg.sender, self, tokens_out)
send(msg.sender, eth_out)

This increases token_pool and decreases eth_pool, shifting the price in the opposite direction.
An example ETH to OMG purchase is shown below.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 7 of 15

Example: ETH - OMG

Note: This example uses a fee of 0.25%. The real Uniswap contract has a fee of 0.3%.

10 ETH and 500 OMG (ERC20) are deposited into a smart contract by liquidity providers. An
invariant is automatically set such that ETH_pool * OMG_pool = invariant.

ETH_pool = 10
OMG_pool = 500
invariant = 10 * 500 = 5000

An OMG buyer sends 1 ETH to the contract. A 0.25% fee is taken out for the liquidity providers,
and the remaining 0.9975 ETH is added to ETH_pool . Next, the invariant is divided by the new
amount of ETH in the liquidity pool to determine the new size of 0MG_pool . The remaining
OMG is sent to the buyer.

Buyer sends: 1 ETH

Fee = 1 ETH /500 = 0.0025 ETH

ETH_pool = 10 + 1 - 0.0025 = 10.9975
OMG_pool = 5000/10.9975 = 454.65

Buyer receieves: 500 - 454.65 = 45.35 OMG

The fee is now added back into the liquidity pool, which acts as a payout to liquidity providers
that is collected when liquidity is removed from the market. Since the fee is added after price
calculation, the invariant increases slightly with every trade, making the system profitable for
liquidity providers. In fact, what the invariant really represents is ETH_pool * OMG_pool at the
end of the previous trade.

ETH_pool = 10.9975 + 0.0025 = 11
OMG_pool = 454.65
new invariant = 11 * 454.65 = 5,001.15

In this case the buyer received a rate of 45.35 OMG/ETH. However the price has shifted. If
another buyer makes a trade in the same direction, they will get a slightly worse rate of
OMG/ETH. However, if a buyer makes a trade in the opposite direction they will get a slightly

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 8 of 15
better ETH/OMG rate.

1 ETH in
44.5 OMG out
Rate = 45.35 OMG/ETH

Purchases that are large relative to the total size of the liquidity pools will cause price slippage.
In an active market, aribitrage will ensure that the price will not shift too far from that of other

exchanges.
ETH to OMG Exchange in Uniswap
Exchange State 1 Exchange State 2
ETH =10 Swap ETH for OMG ETH=10+1=11
OMG = 500 | OMG =5000/11 = 454.5
Invariant = 10*500 = 5000 Invariant = 5000
A
1ETH - 455 OMG
Buyer

ERC20 2 ERC20 Trades

Since ETH is used as a common pair for all ERC20 tokens, it can be used as an intermediary for
direct ERC20 to ERC20 swaps. For example, it is possible to convert from OMG to ETH on one
exchange and then from ETH to KNC on another within a single transaction.

To convert from OMG to KNC (for example), a buyer calls the function tokenToTokenSwap() on
the OMG exchange contract:

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 9 of 15

contract Factory():
def getExchange(token_addr: address) -> address: constant

contract Exchange():
def ethToTokenTransfer(recipent: address) -> bool: modifying

factory: Factory

@public

def tokenToTokenSwap(token_addr: address, tokens_sold: uint256):
exchange: address = self.factory.getExchange(token_addr)
fee: uint256 = tokens_sold / 500
invariant: uint256 = self.eth_pool * self.token_pool
new_token_pool: uint256 = self.token_pool + tokens_sold
new_eth _pool: uint256 = invariant / (new_token_pool - fee)
eth_out: uint256 = self.eth_pool - new_eth_pool
self.eth_pool = new_eth_pool
self.token_pool = new_token_pool
Exchange(exchange).ethToTokenTransfer(msg.sender, value=eth_out)

where token_addr is the address of KNC token and tokens_sold is the amount of OMG being
sold. This function first checks the factory to retreive the KNC exchange address. Next, the
exchange converts the input OMG to ETH. However instead of returning the purchased ETH to
the buyer, the function instead calls the payable function ethToTokenTransfer() on the KNC
exchange:

@public

@payable

def ethToTokenTransfer(recipent: address):
fee: uint256 = msg.value / 500
invariant: uint256 = self.eth_pool * self.token_pool
new_eth_pool: uint256 = self.eth_pool + msg.value
new_token_pool: uint256 = invariant / (new_eth_pool - fee)
tokens_out: uint256 = self.token_pool - new_token_pool
self.eth_pool = new_eth_pool
self.token_pool = new_token_pool
self.invariant = new_eth_pool * new_token_pool
self.token.transfer(recipent, tokens out)

ethToTokenTransfer() receives the ETH and buyer address, verifies that the call is made from
an exchange in the registry, converts the ETH to KNC, and forwards the KNC to the original
buyer. ethToTokenTransfer() functions indentically to ethToTokenswap() but has the additional
input parameter recipient: address . This is used to forward purchased tokens to the original
buyer instead of msg.sender , which in this case would be the OMG exchange.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 10 of 15

ABC to ETH Exchange XYZ to ETH Exchange
ABC reserve increases l ETH { ETH reserve inceases
ETH reserve decreases J Buyer Address VL XYZ reserve decreases

A
@
ABC Tokens il XYZ Tokens
XYZ address M -
Buyer

Swaps vs Transfers

The functions ethToTokenSwap() , tokenToEthSwap() , and tokenToTokenSwap() return purchased
tokens to the buyers address.

The functions ethToTokenTransfer(), tokenToEthTransfer(), and tokenToTokenTransfer()
allow buyers to make a trade and then immediately transfer purchased tokens to a recipient
address.

Providing Liquidity

Adding Liquidity

Adding liquidity requires depositing an equivalent value of ETH and ERC20 tokens into the
ERC20 token’s associated exchange contract.

The first liquidity provider to join a pool sets the initial exchange rate by depositing what they
believe to be an equivalent value of ETH and ERC20 tokens. If this ratio is off, arbitrage traders
will bring the prices to equilibrium at the expense of the initial liquidity provider.

All future liquidity providers deposit ETH and ERC20's using the exchange rate at the moment
of their deposit. If the exchange rate is bad there is a profitable arbitrage opportunity that will
correct the price.

Liquidity Tokens

Liquidity tokens are minted to track the relative proportion of total reserves that each liquidity
provider has contributed. They are highly divisible and can be burned at any time to return a
proporitonal share of the markets liquidity to the provider.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 11 of 15

Liquidity providers call the addLiquidity() function to deposit into the reserves and mint new
liquidity tokens:

@public

@payable

def addLiquidity():
token_amount: uint256 = msg.value * token_pool / eth_pool
liquidity_minted: uint256 = msg.value * total liquidity / eth_pool

eth_added: uint256 = msg.value

shares_minted: uint256 = (eth_added * self.total shares) / self.eth_pool
tokens_added: uint256 = (shares_minted * self.token_pool) / self.total shares)
self.shares[msg.sender] = self.shares[msg.sender] + shares_minted
self.total_shares = self.total _shares + shares_minted

self.eth_pool = self.eth_pool + eth_added

self.token_pool = self.token_pool + tokens_added
self.token.transferFrom(msg.sender, self, tokens_added)

The number of liquidity tokens minted is determined by the amount of ETH sent to the
function. It can be calulcated using the equation:

ethDeposited

amountMinted = total Amount *
ethPool

Depositing ETH into reserves requires depositing an equivalent value of ERC20 tokens as well.
This is calculated with the equation:

ethDeposited

tokensDeposited = tokenPool * <t Pool

Removing Liquidity

Providers can burn their liquidity tokens at any time to withdraw their proportional share of ETH
and ERC20 tokens from the pools.

ethWithdrawn = ethPool &nountBurned

total Amount

tokensWithdrawn = tokenPool x ¥mountBurned
total Amount

ETH and ERC20 tokens are withdrawn at the current exchange rate (reserve ratio), not the ratio
of their originial investment. This means some value can be lost from market fluctuations and
arbitrage.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 12 of 15
Fees taken during trades are added to total liquidity pools without minting new liquidity tokens.
Because of this, ethwithdrawn and tokensWithdrawn include a proportional share of all fees
collected since the liquidity was first added.

Liquidity Tokens

Uniswap liquidity tokens represent a liquidity providers contribution to an ETH-ERC20 pair. They
are ERC20 tokens themselves and include a full implementation of EIP-20
(https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md).

This allows liquidity providers to sell their liquidity tokens or transfer them between accounts
without removing liquidity from the pools. Liquidity tokens are specific to a single ETH2ERC20
exchange. There is no single, unifying ERC20 token for this project.

Fee Structure

e ETH to ERC20 trades
o 0.3% fee paid in ETH

e ERC20 to ETH trades
o 0.3% fee paid in ERC20 tokens

e ERC20 to ERC20 trades
o 0.3% fee paid in ERC20 tokens for ERC20 to ETH swap on input exchange

o 0.3% fee paid in ETH for ETH to ERC20 swap on output exchange
o Effectively 0.5991% fee on input ERC20

There is a 0.3% fee for swapping between ETH and ERC20 tokens. This fee is split by liquidity
providers proportional to their contribution to liquidity reserves. Since ERC20 to ERC20 trades
include both an ERC20 to ETH swap and an ETH to ERC20 swap, the fee is paid on both
exchanges. There are no platform fees.

Swapping fees are immediately deposited into liquidity reserves. Since total reserves are
increased without adding any additional share tokens, this increases that value of all share
tokens equally. This functions as a payout to liquidity providers that can be collected by
burning shares.

Since fees are added to liquidity pools, the invariant increases at the end of every trade. Within
a single transaction, the invariant represents eth_pool * token_pool at the end of the
previous transaction.

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 13 of 15

Custom Pools

ERC20 to Exchange

The additional functions tokenToExchangeSwap() and tokenToExchangeTransfer() add to
Uniswap's flexibility. These functions convert ERC20 tokens to ETH and attempts an
ethToTokenTransfer() at a user input address. This allows ERC20 to ERC20 trades against
custom Uniswap exchanges that do not come from the same factory, as long as they implement
the proper interface. Custom exchanges can have different curves, managers, private liquidity
pools, FOMO-based ponzi schemes, or anything else you can think of.

Opt-in Upgrades

Upgrading censorship resistant, decentralized smart contracts is hard. Hopefully Uniswap 1.0 is
perfect but it probably is not. If an improved Uniswap 2.0 design is created, a new factory
contract can be deployed. Liquidity providers can choose to move to the new system or stay in
the old one.

The tokenToExchange functions enable trades with exchanges launched from different factories.
This can be used for backwards compatibility. ERC20 to ERC20 trades will be possible within
versions using both tokenToToken and tokenToExchange functions. However, across versions
only tokenToExchange will work. All upgrades are opt-in and backwards compatible. % % %

Frontrunning

Uniswap can be frontrun to some extent. This is bounded by user set minimum/maximum
values and transaction deadlines.

DEX inside a Whitepaper

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23 Page 14 of 15

}5 Q v Q Connect v

Buy, sell, and explore tokens and NFTs

Swap Tokens NFTs Pool

Case 1:22-cv-02780-KPF Document 83-9 Filed 02/06/23

Warning A

This token isn't
traded on
leading U.S.
centralized
exchanges or
frequently
swapped on
Uniswap.
Always conduct
your own
research before
trading. Learn
more

https:... & D

Page 15 of 15

	Exhibit_tab_I
	Whitepaper- v1

